Contents

- 1 Kinh Nghiệm về What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? Mới Nhất
- 1.1 What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10?
- 1.2 What number should be subtracted from 3x 3 5x 2 6x so that on dividing it by x 3 The remainder is 8?
- 1.3 What number should be subtracted from F X so that on dividing it with x 2 The remainder is 10?
- 1.4 What must be subtracted from 8×4 14×3 − 2×2 8x − 12 so that the resulting polynomial is exactly divisible by 4×2 3x − 2?
- 1.5 What must be subtracted from 8×4 14×3 2×2 8x 12 so that the resulting?
- 1.6 What number should be subtracted from 3x 3 5x 2 6x so that on dividing it by x 3 The remainder is 8?
- 1.7 Review What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? ?
- 1.8 Chia Sẻ Link Tải What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? miễn phí

## Kinh Nghiệm về What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? Mới Nhất

You đang tìm kiếm từ khóa What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? được Cập Nhật vào lúc : 2022-10-04 17:05:34 . Với phương châm chia sẻ Kinh Nghiệm Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi tìm hiểu thêm Post vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.

Free math answers are available on all types of math questions such as basic math, numbers, algebra, logarithm, trigonometry, and pre-calculus homework questions with step-by-step explanations within 24 hours. Math problem solver can work on both basic and advanced concepts. Students can type their question to fill-up the below comment box so that you get your answers within 24 hours.

Nội dung chính

- What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10?
- What number should be subtracted from 3x 3 5x 2 6x so that on dividing it by x 3 The remainder is 8?
- What number should be subtracted from F X so that on dividing it with x 2 The remainder is 10?
- What must be subtracted from 8×4 14×3 − 2×2 8x − 12 so that the resulting polynomial is exactly divisible by 4×2 3x − 2?
- What must be subtracted from 8×4 14×3 2×2 8x 12 so that the resulting?
- What number should be subtracted from 3x 3 5x 2 6x so that on dividing it by x 3 The remainder is 8?

You can click on the below comment box and submit with the required information along

with your homework questions so that we can help you. Parents and teachers can also contact us clicking in the below comment box and let us know if you have any doubts so that we can help you. Math-Only-Math is always with you to help you 24 hours.

In không lấy phí math answers, these are the questions asked by the students to show it in step-by-step solution.

1. In a group of cows and chickens, the number of legs was 14 more than twice the number of heads. The number of cows

was:

(a) 5, (b) 7, (c) 10, (d) 12, (e) 14

Solution:

Let the number of cows be x and their legs be 4x.

Let the number of chicken be y and their legs be 2x.

Total number of legs = 4x + 2y.

Total number of heads = x + y.

The number of legs was 14 more than twice the number of heads.

Therefore, 2 × (x + y) + 14 = 4x + 2y.

or, 2x + 2y + 14 = 4x + 2y.

or, 2x + 14 = 4x [subtracting 2y from both sides].

or, 14 =

4x – 2x [subtracting 2x from both sides].

or, 14 = 2x.

or, x = 7 [dividing by 2 on both sides].

Therefore, the number of cows = 7.

Answer: (b)

2. The roots of the equation ax2 + bx + c = 0 will be reciprocal if:

(a) a = b, (b) a = bc, (c) c = a, (d) c = b, (e) c = ab.

Solution:

Let k be one of the root of the given equation.

According to the problem,

1/k will be the other root of the given equation.

We know that, product of the roots of the equation = c/a.

Therefore, k × 1/k = c/a.

or, 1 = c/a.

or, a = c [multiplying a on both sides].

The roots of the equation ax2 + bx + c = 0 will be reciprocal if a = c.

Therefore, a = c or c = a.

Answer: (c)

3. If 8 ∙ 2x = 5(y+8), then when y = -8, x =

(a) -4, (b) -3, (c) 0, (d) 4, (e) 8

Solution:

8 ∙ 2x = 5(y+8).

or, 8 ∙ 2x = 5(-8+8).

or,

2x = 50.

or, 2x = 1 [anything to the power 0 is 1 then, 50 = 1].

Taking log on both sides,

log 2x = log 1.

or, x log 2 = 0 [since log 1 = 0].

or, x = 0/log 2 [dividing log 2 on both sides].

Therefore, x = 0.

Answer: (c)

4. A circle of radius 10 inches has its center the vertex C of an equilateral triangle ABC and passes through the other two vertices. The side AC extended through C intersects the circle D. The number of

degrees of angle ADB is:

(a) 15, (b) 30, (c) 60, (d) 90, (e) 120

Answer: (b)

5. The expression 1 – 1/(1 + √3) + 1/(1 – √3) equals:

(a)

1 – √3, (b) 1, (c) – √3, (d) √3, (e) 1 + √3.

Solution:

6. If x-1 – 1 is divided by x – 1 the quotient is:

(a) 1, (b) 1/(x-1), (c) – 1/(x-1), (d) 1/x, (e) – 1/x

Solution:

x-1 – 1 is divided by (x – 1)

= x-1 – 1 × 1/(x-1)

= 1/x – 1 × 1/(x-1)

= (1 –

x/x) × 1/(x-1)

= – (1 – x)/x × 1/(x-1)

= – 1/x [cancel x – 1 from the numerator and denominator].

Answer: (e)

7. The root(s) of 15/(x2 – 4) – 2/(x – 2) = 1 is (are):

(a) -5 and 3, (b) ± 2, (c) 2 only, (d) -3 and 5, (e) 3 only.

Solution:

15/(x2 – 4) – 2/(x – 2) = 1.

15/(x2 – 22) – 2/(x – 2) = 1.

15/(x + 2)(x – 2) – 2/(x – 2) = 1.

[15 – 2(x + 2)]/[(x + 2)(x – 2)] = 1.

[15 – 2x – 4] /[(x + 2)(x

– 2)] = 1.

[11 – 2x]/[(x + 2)(x – 2)] = 1.

11 – 2x = (x + 2)(x – 2).

11 – 2x = x2 – 4.

x2 – 4 = 11 – 2x.

x2 + 2x – 4 – 11 = 0.

x2 + 2x – 15 = 0.

x + 5) (x – 3) = 0.

x + 5 = 0 or, x – 3 = 0

x = -5 or, x = 3.

Therefore, x = -5 and 3.

Answer: (a)

8. A 7-in. pizza costs $8 and a 14-in. pizza costs $20. Tommy says the smaller pizza is a better buy because the larger pizza is twice as big and more than twice

as expensive. Do you agree with his reasoning? If not, explain why not.

Solution:

No, a pizza looks like a circle.

And we know that area of a circle depends on the radius.

Area of a circle = πr2, here pi (π) is constant.

So, we can clearly say that area of a circle is proportional to the square of the diameter.

Similarly, the cost a pizza depends on its area not its diameter.

9. Suppose that Jody drove 80 miles in 2 hours.

Dividing 80 by 2 tells us how many miles Jody drove in each hour. The units for this rate are miles per hour (mi/hr). If we divide 2 by 80 what information would this give us? Give an interpretation of the rate. What units would be used for this rate?

Solution:

We know that, speed = distance/time.

When total distance is divided by total time we get the speed.

Here, speed = distance covered in 1 hour.

According to the question,

Total

distance 80 miles divided by total time 2 hours = 80/2.

miles/hour = 40 mile/hour.

Therefore, Jody drove 40 miles in 1 hour.

But if we divide total time by total distance then, we get time taken to cover 1 mile.

Similarly, if we divide 2 by 80 then, we get time taken to cover 1 mile.

Therefore, unit used for this case = hours/mile.

10. 19/6 = 4/27. Which method did you use to determine whether this proportion is true or false?

Solution:

19/6 = 4/27.

Cross multiplication:

19 × 27 = 513.

6 × 4 = 24.

We see that 513 are not equal to 24.

Therefore, we determine 19/6 = 4/27 is not proportion so, the answer is false.

11. On Thursday Mabel handled 90 transactions. Anthony handled 10% more transactions than Mabel, Cal handled 2/3rds of the transactions that Anthony handled, and Jade handled 16 more transactions than Cal. How much transactions did Jade handled?

Solution:

Mabel handled 90 transactions

Anthony handled 10% more transactions than Mabel

Anthony = 90 + 90 × 10%

= 90 + 90 × 0.10

= 90 + 9

= 99

Cal handled 2/3rds of the transactions than Anthony handled

Cal = 2/3 × 99

= 66

Jade handled 16 more transactions than Cal.

Jade = 66 + 16

= 82

Jade handled = 82 transactions.

Answer: 82

12. If a man buys 20 lollipops for $90 and sold them for $2 dollars determine

his loss.

Solution:

Cost of 20 lollipops = $90

Sold each lollipop for $2

So he sold 20 lollipops for $(20 × 2) = $40

Loss = $(90 – 40) = $50

Therefore, loss = $ 50.

13 . If C is a whole number, C+1 is a whole number after that. If A is a whole number, what is a whole number before that?

Solution:

We know that the number ‘0’ together with the natural numbers gives us the numbers 0, 1,

2, 3, 4, 5, …………… which are called whole numbers.

If A is a whole number and it is greater than 0 then the whole number before that is A – 1, which will always be a whole number.

Again, when A is a whole number and it is equal to 0 then the whole number before that is A – 1 which means 0 – 1 = -1, which is not a whole number.

Therefore, if A is a whole number then the number before that will not always be a whole number.

14. Solve and leave answer in

fraction

– (2-5/4)/9

Solution:

Answer: -1/12

15. Divide the cancelling out all common factors

Solution:

-((1-13/8)/10/24)

Answer: 3/2

16. The annual cost of owning and operating a car, C dollars, is a linear function of the distance, d kilometers, it is driven.c = md + b

The cost is $4600 for 10 000 km and $9100 for 25 000 km.

(a) Determine the values of m and b.

(b) Write c as a function of d.

Solution:

(a)

c = md + b

The cost is $ 4600 for 10 000 km

4600 = m (10 000) + b

10 000 m + b = 4600

b = -10 000 m + 4600 ——- (i)

The cost is $ 9100 for 25 000 km

9100 = m (25 000) + b

9100 = 25 000 m + b

25 000 m + b = 9100

b = -25 000 m + 9100 ——— (ii)

From equation (i) and (ii) we get;

-10 000 m + 4600 = -25 000 m + 9100

-10 000 m + 25 000 m = 9100 – 4600

15 000 m = 4500

m = 4500/15 000

m = 3/10

m = 0.3

Now, put the value of m = 0.3 in equation (i) we get;

b = -10 000 (0.3) + 4600

b = -3000 + 4600

b = 1600

Answer: m = 0.3 and b = 1600

(b) c = md + b

m = 0.3

b = 1600

c = 0.3d + 1600

Answer: c = 0.3d + 1600

17. Solve using synthetic division or long division(x2 + 13x + 40) ÷ (x + 8)

Solution:

We solved the division in both the ways;

(x2

+ 13x + 40) ÷ (x + 8) by using synthetic division

Quotient = x + 5

Remainder = 0

OR

(x2 + 13x + 40) ÷ (x + 8) by using long division

Quotient

= x + 5

Remainder = 0

Answer: x + 5

18. Solve using on synthetic division or long division (2×2 – 23x + 63) ÷ (x – 7)

Solution:

We solved the division in both the ways;

(2×2 – 23x + 63) ÷ (x – 7) by using synthetic division,

Quotient = 2x – 9

Remainder = 0

OR

(2×2 – 23x + 63) ÷ (x – 7) by using long division

Quotient = 2x – 9

Remainder = 0

Answer: 2x – 9

19. Let f(x) = 4×3 + 7×2 – 13x – 3 and g(x) = x + 3. Find f(x)/g(x)

Solution:

f(x) = 4×3 + 7×2 – 13x – 3

g(x) = x + 3

f(x)/g(x) = (4×3 + 7×2 – 13x – 3)/(x + 3)

We solved the division in both the ways;

(4×3 + 7×2 – 13x – 3) ÷ (x + 3) by using synthetic division

Answer:

Quotient = 4×2 – 5x + 2

Remainder = -9

OR

(4×3 + 7×2 – 13x – 3) ÷ (x + 3) by using

long division

Answer:

Quotient = 4×2 – 5x + 2

Remainder = -9

20. Let f(x) = 3×3 – 4x – 1 and g(x) = x + 1. Find f(x)/g(x)

Solution:

f(x) = 3×3 – 4x – 1

g(x) = x + 1

f(x)/g(x) = (3×3 – 4x – 1)/(x + 1)

We first need to rearrange

all the terms of the dividend according to descending powers of x. The dividend then becomes 3×3 – 4x – 1, with 3 understood as the coefficient of the first term. No x2 term is there in the polynomial, but we take a zero as a place holder in the x2 position, so the dividend is written as 3×3 + 0x2 – 4x – 1.

We solved the division in both the ways;

(3×3 + 0x2 – 4x – 1) ÷ (x + 1) by using synthetic division

Quotient: 3×2 – 3x – 1

Remainder: 0

OR

No x2 term is there in the polynomial, but we take a zero as a place holder in the x2 position, so the dividend is written as

3×3 + 0x2 – 4x – 1.

(3×3 + 0x2 – 4x – 1) ÷ (x + 1) by using long division

Quotient: 3×2 – 3x – 1

Remainder: 0

Answer: 3×2 – 3x – 1

21. Let f(x) = x4 – 8×3 + 16×2 – 19 and g(x) = x – 5. Find f(x)/g(x)

Solution:

f(x) = x4 – 8×3 + 16×2 – 19

g(x) = x – 5

f(x)/g(x) = (x4 – 8×3 + 16×2 – 19)/(x – 5)

We first need to rearrange all the

terms of the dividend according to descending powers of x. The dividend then becomes x4 – 8×3 + 16×2 – 19, with 1 understood as the coefficient of the first term. No x term is there in the polynomial, but we take a zero as a place holder in the x position, so the dividend is written as x4 – 8×3 + 16×2 + 0x – 19.

We solved the division in both the ways;

(x4 – 8×3 + 16×2 + 0x – 19) ÷ (x – 5) by using synthetic division

Quotient = x3 – 3×2 + x + 5

Remainder = 6

OR

No x term is there in the polynomial, but we take a zero as a place holder in the x position, so the dividend is written as

x4 – 8×3 + 16×2 + 0x – 19.

(x4 – 8×3 + 16×2 + 0x – 19) ÷ (x – 5) by using long division

Quotient = x3 – 3×2 + x + 5

Remainder = 6

Answer:

Quotient = x3 – 3×2 + x + 5

Remainder = 6

If students have any queries in future regarding any type of questions, please fill-up the below comment box to convey your message, so that we can help you providing không lấy phí math answers

with step-by-step explanation.

From Free Math Answers to HOME PAGE

Didn’t find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

### What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10?

Let the number to be subtracted be k and the resulting polynomial be fx.So fx = x3 + 3×2 − 8x +

14 – kIt is given that when fx is divided by x − 2 the remainder is 10. Thus the required number is 8.

### What number should be subtracted from 3x 3 5x 2 6x so that on dividing it by x 3 The remainder is 8?

Let the numbw-er k be added and resulting polnomic be f(x). it is given that when f(x)is dividing by (x-3), the remainder is 8. Thus, the required number is -46.

### What number should be subtracted from F X so that on dividing it with x 2 The remainder is 10?

It is given that when f(x) is divided by (x − 2), the remainder is 10. Thus, the required number is 8.

### What must be subtracted from 8×4 14×3 − 2×2 8x − 12 so that the resulting polynomial is exactly divisible by 4×2 3x − 2?

Hence, we have to subtract `11x-8` so that `8x^4+14 x^3-2x^2+7x-8` is exactly divisible by `4x^2+3x-2`. Step by step solution by experts to help you in doubt clearance & scoring excellent marks in exams.

### What must be subtracted from 8×4 14×3 2×2 8x 12 so that the resulting?

∴ The expression that must be subtracted is 15x−14.

### What number should be subtracted from 3x 3 5x 2 6x so that on dividing it by x 3 The remainder is 8?

Let the numbw-er k be added and resulting polnomic be f(x). it is given that when f(x)is dividing by (x-3), the remainder is 8. Thus, the required number is -46.

Tải thêm tài liệu liên quan đến nội dung bài viết What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10?

Reply

2

0

Chia sẻ

### Review What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? ?

You vừa đọc nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về **Clip What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? tiên tiến và phát triển nhất **

### Chia Sẻ Link Tải What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? miễn phí

You đang tìm một số trong những *Chia Sẻ Link Cập nhật What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? Free*.

#### Giải đáp vướng mắc về What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10?

Nếu sau khi đọc nội dung bài viết What must be subtracted from x3 3×2 8x 14 so that on dividing it by x 2 The remainder is 10? vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Tác giả lý giải và hướng dẫn lại nha

#subtracted #3×2 #dividing #remainder